利用報告書 / User's Report

【公開日:2023.07.31】【最終更新日:2023.05.16】

課題データ / Project Data

課題番号 / Project Issue Number

22UT0014

利用課題名 / Title

ジルコニア微構造解析

利用した実施機関 / Support Institute

東京大学

機関外・機関内の利用 / External or Internal Use

外部利用/External Use

技術領域 / Technology Area

【横断技術領域 / Cross-Technology Area】(主 / Main)計測・分析/Advanced Characterization(副 / Sub)-

【重要技術領域 / Important Technology Area】(主 / Main)革新的なエネルギー変換を可能とするマテリアル/Materials enabling innovative energy conversion(副 / Sub)-

キーワード / Keywords

電子顕微鏡/Electron microscopy,X線回折/X-ray diffraction,燃料電池/ Fuel cell


利用者と利用形態 / User and Support Type

利用者名(課題申請者)/ User Name (Project Applicant)

細井  浩平

所属名 / Affiliation

東ソー株式会社

共同利用者氏名 / Names of Collaborators in Other Institutes Than Hub and Spoke Institutes

フウ ビン,梅谷 順子,沼尾 雄,Ong Feishen

ARIM実施機関支援担当者 / Names of Collaborators in The Hub and Spoke Institutes

寺西 亮佑,福川 昌宏,近藤 尭之,府川 和弘,飯盛 桂子

利用形態 / Support Type

(主 / Main)機器利用/Equipment Utilization(副 / Sub),技術補助/Technical Assistance


利用した主な設備 / Equipment Used in This Project

UT-004:環境対応型超高分解能走査透過型電子顕微鏡
UT-006:ハイスループット電子顕微鏡
UT-103:高分解能走査型電子顕微鏡
UT-155:クライオイオンスライサー
UT-203:粉末X線回折装置


報告書データ / Report

概要(目的・用途・実施内容)/ Abstract (Aim, Use Applications and Contents)

Due to its excellent mechanical properties, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has become an important structural ceramic, finding use in optical fiber connectors, grinding media, and precision parts. On the other hand, yttria-stabilized cubic zirconia (Y-CSZ) has been investigated as a candidate for a solid-electrolyte material in fuel cells because of its excellent oxygen-ion conductivity. These properties strongly depend on the microstructures and phase stability in yttria-stabilized zirconia (YSZ), and microstructural improvements are required for development of high-performance zirconia ceramics for new applications. In the present study, the microstructures in 2 mol% Y-TZP and 8 mol% Y-CSZ obtained at various sintering condition were analyzed by Scanning electron microscopy (SEM) technique to investigate microstructural development during sintering. 

実験 / Experimental

Fine zirconia powders containing 2 and 8 mol% Y2O3 (TZ-2Y and TZ-8Ygrades, Tosoh, Tokyo, Japan), manufactured by hydrolysis, served as starting raw materials to make the Y-TZP and Y-CSZ. These powders were uniaxially pressed and then sintered in air. SEM (JSM-7000F, JEOL Ltd., Tokyo, Japan) was used to measure the average grain sizes of the sintered bodies. SEM specimens were polished with a diamond paste of 1 mm particles and then thermally etched. The average grain size was measured by the planimetric method.

結果と考察 / Results and Discussion

Figure 1 shows SEM images of 2 mol% Y-TZP and 8 mol% Y-CSZ sintered at 1500°C for 20 h. The grain size was remarkably larger in 8 mol% Y-CSZ than in 2 mol% Y-TZP. The average grain size was 6 μm for 8 mol% Y-CSZ and 0.7 μm for 2 mol% Y-TZP, respectively. According to the grain-growth mechanism in YSZ, it has been known that a decrease in the amount of segregated Y3+ ions causes the grain growth rate to increase, which can be interpreted by the solute-drag effect of Y3+ ions segregating along the grain boundaries. It is therefore presumed that the amount of segregated Y3+ ions in 2 mol% Y-TZP is greater than that in 8 mol% Y-CSZ.

図・表・数式 / Figures, Tables and Equations


Figure 1. SEM images of (a) 2 mol% Y-TZP and (b) 8 mol% Y-CSZ sintered at 1500°C for 20 h.


その他・特記事項(参考文献・謝辞等) / Remarks(References and Acknowledgements)


成果発表・成果利用 / Publication and Patents

論文・プロシーディング(DOIのあるもの) / DOI (Publication and Proceedings)
  1. Koji Matsui, Low-temperature degradation in yttria-stabilized tetragonal zirconia polycrystal: Effect of Y3+ distribution in grain interiors, Acta Materialia, 227, 117659(2022).
    DOI: https://doi.org/10.1016/j.actamat.2022.117659
  2. Susumu Ikeda, Ion diffusion across/along symmetric tilt grain boundaries in yttria-stabilized zirconia investigated by molecular dynamics simulations, Solid State Ionics, 392, 116163(2023).
    DOI: https://doi.org/10.1016/j.ssi.2023.116163
  3. Qian Yang, Solid‐State Electrochemical Thermal Transistors, Advanced Functional Materials, 33, (2023).
    DOI: https://doi.org/10.1002/adfm.202214939
  4. T. Yokoi, Atomic and electronic structure of grain boundaries in a-Al2O3: A combination of machine learning, first-principles calculation and electron microscopy, Scripta Materialia, 229, 115368(2023).
    DOI: https://doi.org/10.1016/j.scriptamat.2023.115368
  5. Bin Feng, Atomistic grain boundary migration in Al2O3, International Journal of Ceramic Engineering & Science, 5, (2023).
    DOI: https://doi.org/10.1002/ces2.10169
  6. Binjie Chen, Orthorhombic distortion-induced anatase-like optoelectronic properties of rutile TiO2, Journal of Applied Physics, 132, (2022).
    DOI: https://doi.org/10.1063/5.0119725
  7. Daiki Kato, Enhanced high-temperature volume resistivity of AlN by doping, Applied Physics Express, 15, 095501(2022).
    DOI: 10.35848/1882-0786/ac851f
  8. Bin Feng, Crystal Defect Core Studied by Advanced Electron Microscopy, Materia Japan, 61, 640-644(2022).
    DOI: https://doi.org/10.2320/materia.61.640
  9. Koji Matsui, Initial sintering mechanism and additive effect in zirconia ceramics, Journal of the American Ceramic Society, 105, 5519-5542(2022).
    DOI: https://doi.org/10.1111/jace.18484
口頭発表、ポスター発表および、その他の論文 / Oral Presentations etc.
  1. 馮斌, 魏家科,柴田直哉, 幾原雄一,Al2O3粒界移動の原子レベル直接観察, セラミックス, 57, 654-657 (2022)
  2. 馮斌,先端電子顕微鏡法による格子欠陥機能起源の解明と材料設計, セラミックス, 57, 472-474 (2022)
  3. 馮斌、中出博暁、栃木栄太、柴田直哉、幾原雄一 “その場TEM観察を用いたジルコニア強靭化メカニズムの解明” 日本セラミックス協会第35回秋季シンポジウム、令和4年9月15日
  4. 馮斌、村上竜平、松井光二、松田幹大、柴田直哉、幾原雄一 “超高速高温焼結法によるジルコニアセラミックスの創製” 学振124委員会第170回研究会、令和5年1月11日
  5. 松井光二, 高強度・高耐久性ジルコニアセラミックスの開発 -低温劣化の克服-, バイオマテリアル −生体材料−, 40, 144-153(2022).
  6. 松井光二, “ジルコニアセラミックスの高機能化:微構造制御による耐久性向上“ 日本セラミックス協会第16回関西支部学術講演会,令和4年7月1日
特許 / Patents

特許出願件数 / Number of Patent Applications:0件
特許登録件数 / Number of Registered Patents:0件

スマートフォン用ページで見る