文部科学省ナノテクノロジープラットフォーム 平成 29 年度「若手技術奨励賞」受賞

超高圧電子顕微鏡による ガス中その場観察の研究支援

Technical Supporting of In-situ observation in gas atmosphere by HVEM

KEY WORDS environmental TEM, in-situ, SOFC, Hydrogen embrittlement

受賞者:樋口 公孝(名古屋大学)

Awardee: Kimitaka Higuchi (Nagoya University)

概要【Overview】

名古屋大学の反応科学超高圧走査透過電子顕微鏡(JEM-1000K RS)は、独自のガスシールド機構を有しているため、ガス雰囲気中 での加熱、冷却、破壊、電圧印加という複雑な環境下においても、電子顕微鏡その場観察が可能である。本発表では、この特徴を活 かして行った、固体酸化物形燃料電池材料(SOFC)の酸素ガス雰囲気中の電圧印加加熱試験、および、水素ガス雰囲気下における TEM内粒界脆性評価試験に関する支援内容を報告する。

Reaction science ultra high voltage scanning transmission electron microscope of Nagoya University (JEM - 1000K RS) has a unique gas shielding mechanism to realize TEM in-situ observation in a gas atmosphere under heating, cooling, nano-fracturing, electric fielding and so on. In this presentation, we selected the following two TEM in-situ topics; solid oxide fuel cell's (SOFC) reactions in oxygen environment under outer bias, and single grain boundary fracture in hydrogen environment.

支援例1) 燃料電池反応のガス TEM 中その場観察

SOFC reactions in oxygen environment under outer bias

🤛 概要

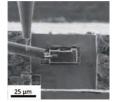
固体酸化物形燃料電池材料の作動時の酸素イオンの移動現象のTEM内その 場観察を目的とし、その実現のためTEM試料ホルダーの改良およびFIBによ る試料加工方法の検討を行い、ガス環境TEM内での温度制御・電圧印加を 安定して実施可能な実験系の構築に貢献した。

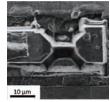
▶ 加熱 & 電圧印加用 TEM 試料ホルダーの検討

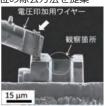
・電圧印加用ワイヤーの素材/サイズやヒーター素材を検討

C ₹B

B~C間で加熱


A~B/C間で電圧印加


図1 試料ホルダー先端部写真


図2 試料ホルダー先端部回路図

▶ FIB(集束イオンビーム加工法)による試料加工

ワイヤー接続方法や試料表面の電気的短絡部位の除去方法を提案

電圧印加ワイヤー接続

薄片化&クリーニング

完成

図3 FIBによるµmオーダーでの試料加工風景

加熱・電圧印加その場観察の結果 試料:W/Au/Pt/YSZ/Pt/Si

ガス条件: O₂ O ~ 0.5(Pa) 加熱温度: RT~500(℃) 印加電圧: 0~0.5(V) 分析手法: TEM-EELS

DYSZ: RT 0.1(Pa) 0.0(V) ZYSZ-523 (K) 0.1(Pa) 0.3(V) TYS2:723 (K) 0.5(Pa) 0.5(V) 350 30 340 energy(eV)

図5 電圧・温度・酸素分圧調整 時のEELS結果

その場観察時のO K-edgeの 形状変化を捉えることに成功

利用者: 富田正弘(株式会社真空デバイス)

Reference : T. Ishida et al., In proceedings of 11th International Symposium on Atomic Level Characterizations for New Materials and Devices '17 pp.373-375

支援例 2) 単一粒界の水素脆性その場観察

Single grain boundary fracture in hydrogen environment

> 概要

水素環境下における強度低下(水素脆性)現象の精密計測および水素脆化 機構の解明を目的とし、単一粒界から採取した複数の微小試料片を異なる 環境中において変形・破壊させた。超高感度センサーを備えたナノインデ ンターによる荷重計測とその場観察をガス環境TEM中において行った例は 無い。荷重計測に影響する諸条件(ガス圧、電子線照射、負荷位置と方 向)を精緻に検討・制御することで、難易度の極めて高い実験を再現性良 く実施することに成功した。

▶ 水素ガス圧の制御

バルブ開度,マスフロー値。 真空ラインの切替を適宜調節

図6 ガスコントロール画面

荷重負荷位置の制御

・極薄試料の中心を負荷チップで 捉える位置に調節

図7 試料と負荷チップのTFM像

🎤 荷重印加その場観察の結果

試料: Ni₃Al 試料厚:500nm ガス条件: 真空 and H₂分圧1000Pa

押込速度:1nm/s

図8 TEM内荷重印加試験の様子

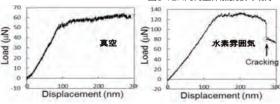


図9 真空と水素雰囲気での押込量 (=変形量) に対する応力 破壊特性への水素の影響を明確に捉えることに成功した

利用者:高橋可昌(関西大学)

Reference: Y. Takahashi et al., Materials Science & Engineering A 661 (2016) 211-216